THE ELLIPTIC POLARITY
OF SCREWS

H. LIPKIN
J. DUFFY

CENTER FOR INTELLIGENT MACHINES AND ROBOTICS
UNIVERSITY OF FLORIDA

OBJECTIVE: TO FURTHER THE USE OF CLASSICAL GEOMETRY
IN MODERN KINEMATICS WITH EMPHASIS TOWARDS
THE ANALYSIS AND CONTROL OF ROBOT MANIPULATORS.
DUALITY AND HOMOGENEOUS COORDINATES (PLÜCKER)

- **POINT** - 4 COMPONENTS \{ DUAL ELEMENTS
- **PLANE** - 4 COMPONENTS \{ AND DUAL COORDINATES
- **LINE** - 6 COMPONENTS \{ SELF-DUAL ELEMENT
 \{ AND DUAL COORDINATES

\[p, \mathbf{P} \]

\[\mathbf{U} \]

\[\mathbf{V} \]

- **RAY** LINE COORDINATES - JOIN OF 2 POINTS
 \[p = |xy| \quad \text{(SIX 2x2 DETERMINANTS)} \]
 \[\text{COORDINATES OF A FORCE} \]

- **AXIS** LINE COORDINATES - MEET OF 2 PLANES
 \[p = |uv| \quad \text{(SIX 2x2 DETERMINANTS)} \]
 \[\text{COORDINATES OF A ROTATION AXIS} \]

- **RAY** <=> **AXIS** - SWITCH FIRST AND LAST 3 COMPONENTS
Linear Transformations

<table>
<thead>
<tr>
<th>Collineation</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>POINT --- POINT</td>
<td>POINT --- PLANE</td>
</tr>
<tr>
<td>PLANE --- PLANE</td>
<td>PLANE --- POINT</td>
</tr>
<tr>
<td>LINE --- LINE</td>
<td>LINE --- LINE</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FORCE --- FORCE</td>
<td>FORCE --- ROTATION</td>
</tr>
<tr>
<td>ROTATION --- ROTATION</td>
<td>ROTATION --- FORCE</td>
</tr>
</tbody>
</table>

Ray and axis coordinates facilitate a distinction between collineations and correlations of lines (self-dual elements).
ABSOLUTE OR INVARIANT POLARITY (CAYLEY)

0 POLARITY - ESTABLISHES AN INVARIANT CONNECTION
OF SPACE BETWEEN DUAL ELEMENTS
(SYMMETRICAL CORRELATION)

0 ELLIPTIC POLARITY - \(\tilde{I}_6 \) (LINES)

\[p' = \tilde{I}_6 p \quad p' = \tilde{I}_6 p \]

0 \(p' \) AND \(p \) (\(p' \) AND \(p \)) ARE ELLIPTIC POLARS

0 RAY COORDINATES ARE INTERPRETED AS AXIS
COORDINATES AND VICE VERSA

0 ELLIPTIC CONJUGATES (ORTHOGONALITY)

\[p^t q = 0 \quad p^t Q = 0 \]

0 EUCLIDEAN POLARITY - SINGULAR TRANSFORMATION

0 CLIFFORD'S POLAR OPERATOR \(\omega \) FOR BIQUATERNIONS \(\omega^2 = 1, 0, -1 \)
MECHANICS

0 TWIST ON A SCREW - THE MOST GENERAL INSTANTANEOUS MOTION OF A RIGID BODY

\[
\begin{bmatrix}
\mathbf{v}_0 \\
\mathbf{\Omega}
\end{bmatrix}
\]

0 EXPRESSED IN AXIS COORDINATES

0 WRENCH ON A SCREW - EQUIVALENT TO A SYSTEM OF FORCES AND MOMENTS

\[
\begin{bmatrix}
\mathbf{f} \\
\mathbf{m}_0
\end{bmatrix}
\]

0 EXPRESSED IN RAY COORDINATES

0 RECIPROCAL TWIST AND WRENCH - NO VIRTUAL WORK
SCREWS - GEOMETRICAL ELEMENTS

- **SCREW** - A LINE WITH AN ASSOCIATED PITCH (SCALAR)

- A SELF-DUAL ELEMENT

- A LINEAR COMBINATION OF LINES IS A SCREW

 \[p = a_1 + \cdots + c, \quad P = aA + \cdots + cC \]

\[
\begin{align*}
\text{WRENCH} & \quad \text{RAY COORDINATES} \\
\text{TWIST} & \quad \text{AXIS COORDINATES}
\end{align*}
\]

- **RECIPROCAL SCREWS** (MIXED COORDINATES)

 \[p^t q = 0 \quad P^t q = 0 \]

- **ORTHOGONAL SCREWS** (SAME COORDINATES)

 \[p^t q = 0 \quad P^t q = 0 \]
CONstrained motion

\[\begin{align*}
\text{AXIS} & \quad \begin{cases}
\text{TWISTS OF FREEDOM:} & \begin{bmatrix}
0 & 0 \\
0 & \Omega_z \\
0 & 0
\end{bmatrix} \\
\text{TWISTS OF NONFREEDOM:} & \begin{bmatrix}
\nu_x & \nu_y & 0 & 0 \\
0 & 0 & \Omega_x & \Omega_y
\end{bmatrix}
\end{cases} \\
\text{RAY} & \quad \begin{cases}
\text{WRENCHES OF CONSTRAINT:} & \begin{bmatrix}
f_x & f_y & 0 & 0 \\
0 & 0 & m_x & m_y
\end{bmatrix} \\
\text{WRENCHES OF NONCONSTRAINT:} & \begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}
\end{cases}
\end{align*} \]

Orthogonal complements

Hybrid manipulator control (Mason, Craig, Raibert)

Simultaneous control of end-effector twists of freedom and wrenches of constraint.
ELLIPITC POLAR SCREWS

0 QUATERNION MAPPING

\[q = h + r \quad q' = h' + r' \]

\[p' = q \, p \quad p = q' \, p' \]

0 THE ELLIPITC POLARITY INDUCES THE TRANSFORMATION OF \(q \) INTO ITS INVERSE \(q^{-1} \)

\[q^{-1} = q' \]
THE QUADRUPLE \((h, r)\)

- **PENCIL OF SCREWS**
 \[(h, r) \quad r \neq 0\]

- **BUNDLE OF SCREWS** (SINGULARITY)
 \[(h, 0) \quad \text{AT THE ORIGIN}\]

- **BUNDLE OF SCREWS** (SINGULARITY)
 \[(\infty, \infty) \quad \text{AT INFINITY}\]
INVERSIVE 4-SPACE

0 POINT (h, r)

0 ELLIPTIC POLAR
 POINT (h', r')

0 \((h^2 + r^2)(h'^2 + r'^2) = 1\)

0 THE ELLIPTIC POLARITY INDUCES
 AN INVERSION THROUGH THE
 HYPERSPHERE \((h^2 + r^2) = 1\)
 FOLLOWED BY A REFLECTION IN
 HYPERPLANE \(h = 0 \)

INVERSION THROUGH THE UNIT SPHERE \((h = 0 \))
HELIX MAPPING

\[
\begin{align*}
q &= h + r = \tau' - \kappa' \\
q' &= h' + r' = \tau - \kappa
\end{align*}
\]

\[\tau \text{ - TORSION}\]

\[\kappa \text{ - CURVATURE VECTOR THROUGH ORIGIN}\]
TWO SYSTEM PLANAR REPRESENTATION

0 BALL'S \((h, r)\) PLANE

0 POINT - SCREW

0 CIRCLE - CYLINDROID

0 EXTENSION TO \((h, r)\) COMPLEX PLANE

0 POINT - PENCIL OF SCREWS

\[q = h + ir \] (SPECIAL QUATERNION)

0 CIRCLE - PENCIL OF CYLINDROIDS

\[\| q - \gamma \| = r^2, \quad \gamma = \alpha + i\beta \]

0 ELLIPTIC POLARITY

\[q' = q^{-1} \]
SELF-POLAR CYLINDROIDS

$$0 \quad \| q - \gamma \| = r^2 \quad \text{CYLINDROID MAPPING}$$

$$0 \quad \| q^{-1} - \gamma \| = r^2 \quad \text{POLAR CYLINDROID MAPPING}$$

EVERY CYLINDROID OF THE PENCIL IS SELF-POLAR

ONLY PENCIL OF CYLINDROIDS IS SELF-POLAR
EFFECT OF ORIGIN TRANSLATION ON THE POLAR SCREW

FIG. 10